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Phosphorus limitation might promote more toxin content

in the marine invader dinoflagellate Alexandrium minutum
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Abstract: Alexandrium minutum (strain AM89BM) has been grown in semi-continuous culture (0.2

vol. cT1) in N-limiting{NO3~:PO43" = 1.6and 3.16), in P-limiting (N : P=160 and 80), and in N and P bal

anced (N: P=16) media. The toxin content in cells changed greatly according to the N: P ratio. Cells

grown in N : P balanced condition showed an average total paralytic shellfish poisoning (PSP) content

of 1.24fmol cell"1. In N-limiting conditions, cells contained ca. 3 times less toxin with mean values of

0.41-0.45 fmol cell"1. In contrast, cells grown in P-limiting conditions contained on average 3.5 and 7

times more toxins than in the balanced N: P condition: 4.31 fmol cell"1 in the N : P=160 medium and

8.01 fmol cell"1 in the N : P=80 medium. The toxin content per carbon unit shows the same trend; the

lowest content in N : P< 16 conditions was 6.5 fmol PSP nmolC"1, whereas in the N :P= 16 condition it

was 3.3 times higher at 21.8fmol PSP nmol C~1 and 9 times higher in N : P>16 conditions at 59.0fmol

PSPnmolC"1. Since present trends in nutrient loading are assumed to have skewed some historically

stable situations towards higher N:P ratios, the stimulation of toxin production by P-limiting media

has important ecological consequences; in niches where DIN : DIP is >16, populations of A. minutum

sufficiently concentrated to represent a significant fraction of shellfish food could pose a serious

problem.
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Introduction

The marine dinoflagellate Alexandrium minutum Halim

produces toxins responsible for paralytic shellfish poisoning

(PSP) in vertebrates, particularly human consumers of mol

luscs having eaten the alga (Oshima et al. 1989). Until

1988, A. minutum had been known only from Egypt (Halim

1960), but has since been recorded in many other locations,

such as the Mediterranean Sea (Forteza et al. 1998; Poletti

et al. 1998), the Atlantic coastal waters of Spain (Delgado

et al. 1998), France and Ireland (Erard-Le Denn 1997), the

Baltic Sea (Nehring 1994), Australia, North America, Thai

land, Taiwan and Japan (Hallegraeff 1995). Dispersal by

human means, mainly deballasting (Hallegraeff 1998) and

inadvertent transfer of detrimental species with transloca-

tion of shellfish stocks (Honjo et al. 1998), is well docu

mented. Respective importances of increased scrutiny and

dispersal are still unclear, however.
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It remains controversial whether certain environmental

conditions favour toxin occurrence in cells. Saxitoxins'

content being enhanced by phosphorus deficiency has been

observed in Alexandrium fundyense and A. tamarense (An

derson et al. 1990), whereas Matsuda et al. (1996) reported

that the cell toxin content decreased as the cell quota for ni

trogen decreased in A.catenella. Previous batch-culture ex

periments with Alexandrium minutum have shown no con

clusive differences between the toxin contents in cells

grown under different nutrient regimes (Flynn et al. 1994,

1995).

By using semi-continuous cultures, we have cultured A.

minutum in nitrogen-limiting and phosphorus-limiting

media. Toxin contents of N- or P-deprived cells have been

compared with those of control cells.

Materials and Methods

Five NO3 :PO43 (atom:atom) regimes were estab

lished, each in 5 replicates: phosphorus limiting (N: P=160
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Table 1. Mean carbon (POC). nitrogen (PON) and phosphorus

(POP) cell contents in Alexamhium minutum grown under differ

ent NOj~: PO4' conditions. Numbers between parentheses are

SD(/»=30).

N:P
POC

(pmolceir1)

PON

(pmolcell

POP

') (pmolcell ')

160

80

16

3

1

.16

.6

193(62)

144 (27)

76(19)

81 (19)

83(20)

19.5(6.1)

16.5(3.3)

8.6 (2.2)

5.5(1.3)

5.1(1.4)

0.46 (0.24)

0.28(0.11)

0.41 (0.08)

0.31 (0.09)

0.45 (0.20)

and 80; NO3 : 60 fjM), balanced N and P condition (N:

P=I6; NO3": 60^M; PO43~: 3.75/iM), and nitrogen limit

ing (N:P=3.I6 and 1.6; PO43": 3.75 jliM). Four-liter cul

tures were run as batch cultures for five days. Then a semi-

continuous-culture regime was established: during the first

three days, 500 ml of culture per bottle were removed and

replaced by fresh medium (0.125 volume d '), and for the

remainder the replaced volume was increased to 800 ml

(0.2 volume d1). On Days 9, 10, 11, 12, 27, 29, 33 and 36,

the removed culture fractions were used for analyses. Sub-

samples for cell counts (Utermohl 1931), nutrient concen

trations (Strickland & Parsons 1972; Valderrama 1995) and

toxin analyses (Hummert et al. 1997; Yu et al. 1998) were

taken for all these fractions; subsamples for biomass analy

ses (POC, PON: Bendschneider & Robinson 1952; POP:

Pujo-Pay & Raimbault 1994) were taken for all fractions

but two: on Days 10 and 11. More details can be found in

Bechemin et al. (1999).

Results

When limiting, nutrients added daily within the renewal

volume were taken up until exhaustion; most residual con

centrations (culture medium with cells removed) were near

the limits of detection. In the two nitrogen-limiting media

(N:P=1.6 and 3.6), the values were 0.21 (±0.26, w=30)

and 0.24 (±0.25, «=30)/iM N-NO3", respectively. Similar

reciprocal trends occurred in the two phosphorus-limiting

media (N:P=160 and 80); residual PO43" concentrations

were 0.08 (±0.05, k=30) and 0.08 (±0.11, n=30)/iM, re

spectively. In contrast, large amounts of non-limiting nutri

ents remained: 39.68 (±12.98, n=30) and 28.22 (±15.35,

«=30)jtiM N-NO3~, in the two nitrogen-rich media, and

2.66 (±0.58, m=30) and 3.03 ^M (±0.81, n=30)^iM P-

PO43~, in the two phosphorus-rich media, respectively. In

the nitrogen: phosphorus balanced medium (N:P=16),

residual NO3~ concentration always remained very low,

0.15 (±0.09, h=30)jUM, whilst the mean remaining PO43~

concentration was somewhat higher, 0.27 (±0.20, /?=30)

The cell content of C and N varied considerably accord

ing to the N: P growth conditions (Table 1). Cells growing

in phosphorus-limiting media (N:P=80 and 160) con

tained 2-3 times more carbon and nitrogen than cells grown

in the N : P balanced medium. Additionally, cells that grew

in nitrogen-limiting media (N:P=3.16 and 1.6) contained

1/3 less nitrogen. In contrast, the phosphorus content per

cell decreased by 30% in the N:P=80 treatment only

(Table 1).

The toxin content of cells changed considerably accord

ing to the N: P ratio. For total PSP toxin concentrations,

cells grown under the N : P balanced condition (N : P= 16)

had a content of 1.24±0.32fmolceir' (w=34). At lower

N: P ratios the cell contents were ca. 3 times lower:

0.41 ±0.26 fmol cell"1 («=35) for N:P=3.16, and

0.45±0.26fmolceir' (/?=36) for N:P=1.6. At the two

higher N: P ratios, the cell contents were 3.5 and 6.5 times

higher than at the balanced N : P value, but the highest con

tent was not recorded for the highest N : P treatment; for the

medium concentration treatment (N : P= 160), the toxin cell

content was 4.31 ±2.52 fmol cell"1 («=31), while it peaked

at 8.01 ±2.96 fmol cell"' (n=35) in the N : P=80 medium.

Discussion

Both the carbon and nitrogen contents of cells grown

under the P-limiting conditions were significantly higher

than those in cells grown under the N-limiting conditions:

roughly twice as much carbon, and three times more nitro

gen (Table 1). Flynn et al. (1994) also observed almost ex

actly the same difference. Cells grown under the N: P bal

anced condition had a carbon content similar to cells grown

under N-limiting conditions, while their nitrogen content

was in-between those of cells grown under P-limiting or N-

limiting conditions. Our values for cells grown in P-limit

ing media are higher than those reported by Flynn et al.

(1994); we have no clear explanation for this difference.

The PON: POP ratio was >50 for cells grown in phospho

rus-limiting media, <21 for cells grown in nitrogen-limit

ing media, and 21 for cells grown in the N : P balanced con

dition (Table 2).

Sakshaug & Holm-Hansen (1977) concluded that the

point of change from N- to P-deficiency in cells would be

PON: POP=23 for Skeletonema costaturn and 45 for

Pavlova lutheri. Maestrini & Kossut (1981) recorded PON:

POP= 11.5-19.7 in N-deficient, and PON: POP=31.8-35.5

in P-deficient cells of Thalassiosira pseudonana. According

to Healey & Hendzel (1980), who reviewed a large array of

results, a C: P >260 and a N: P ratio >43 (atom: atom) re

flect a severe phosphorus deficiency in the cell content,

whereas a C : N >14.3 reflects a severe nitrogen deficiency.

Moreover, Hillebrand & Sommer (1999) concluded that

with a C: N> 10 and a N : P< 13 in cells, the microalgae are

nitrogen limited, whereas with a C: P> 180 and a N : P>22

they are phosphorus limited.

Accordingly, the mean values we obtained for A. minu

tum grown in N-limiting media (POC :PON= 15.0 and

16.4, N : P= 12 and 18) would reflect a nitrogen deficiency
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Table 2. Mean POC:PON, POC: POP and PON:POP of

Alexandrium minutum grown under different NO3 : PO4V condi

tions. Numbers between parentheses are SD (n=30).

8..

N:P POC: PON POC:POP PON: POP

160

80

16

3.16

1.6

10.0(1.4)

8.9(1.0)

8.8 (2.5)

15.0(1.4)

16.4(1.8)

516(267)

560 (285)

184 ( 25)

266 ( 32)

203 ( 52)

50 (20.0)

62 (26.6)

21 ( 2.9)

18 ( 3.4)

12 ( 3.5)

in the cell contents, whereas values for the P-limiting media

(POC: POP=516 and 560, N: P=50.3 and 61.7) would re

flect a phosphorus deficiency. Nevertheless, the fact that the

phosphorus content per cell decreased by 30% in the N:

P=80 treatment only, prompts us to be cautious. Alto

gether, the results indicate that cells grown under the two

N : P<16 conditions were nitrogen-deficient, while it is un

clear whether contents of cells grown in N:P=80 and

N: P= 160 conditions were phosphorus-deficient in the full

sense—namely that the cell metabolism was affected by a

lack of phosphorus. It remains a fact, however, that the or

ganic content of cells grown in the high N: P media was

skewed towards an accumulation of carbon and nitrogen;

accordingly, we conclude that these cells were phosphorus-

deprived and nitrogen-surfeit.

Whether expressed per cell or per unit carbon biomass,

there was a big increase in toxin content as P deprivation

and N supply were increased (Fig. I). Increases in cell vol

ume and carbon content have frequently been reported to

co-occur with P deficiency (Fuhs 1969; Fuhs et al. 1972).

Likewise, Flynn et al. (1996) showed that A. minutum cells

enlarged by up to 37% during prolonged P deprivation.

Nevertheless, such changes in the cell volume cannot ex

plain the ca. 20-fold higher toxin content in the cells grown

under the N: P>16 conditions compared to N : P< 16 con

ditions we observed; 8.0 and 0.4 fmol cell"1, respectively.

Moreover, the toxin content per carbon unit followed the

same trend; for the N: P> 16 condition it was 9 times

higher than for the N : P= 16 condition. Hence, we conclude

that cells growing in high N: P media did indeed synthesise

PSP toxins more actively than other cells.

This finding is in agreement with the results of Boyer et

al. (1987) in A. tamarense and those of Anderson et al.

(1990) in A. fundyense. In contrast, it differs somewhat

from that of Flynn et al. (1994, 1995), who reported that

toxin content in A. minutum declined with N or P depriva

tion. This discrepancy might partly be due to the different

experimental designs. In Flynn et al.'s experiments, A. min

utum was grown in batch culture, in the presence of high

initial NO3~ and PO43" concentrations. All the highest toxin

contents per cell were recorded in the early growth stages,

when only a fraction of the nutrient reservoirs had been

taken up. In contrast, during our experiments, cells ex

hausted daily the reservoir of the limiting nutrient; at the

Q.4-L

O

I 2±

-.80

Toxins per cell

0 20 40

PON : POP (atom:atom)

Fig. 1. PSP toxin content per cell and per POC unit in Alexan

drium mimitum, according to the PON: POP ratio in cells.

time of harvesting, concentrations of the limiting nutrients

were below the detection levels.

The stimulation of toxin production by phosphorus defi

ciency in A. minutum has potentially important ecological

consequences. In recent decades, proliferation in coastal

waters of toxin-producing algae with accumulation of tox

ins in shellfish and fish has emerged as a major nuisance,

affecting the shellfish farming and fisheries industries, as

well as posing a danger to public health (Anderson 1997).

Although toxic algal episodes are not new, anthropogenic

activities appear to be increasing the extent and intensity of

harmful algal blooms (Anderson 1997).

Nitrogen has for long been invoked as the principal nutri

ent limiting algal growth potential (Ryther & Dunstan

1971). However, human activities have significantly in

creased the input of nitrogenous and phosphorous nutrients

to estuarine and coastal waters, while the silicon concentra

tion has remained constant or has even decreased in river

discharges as a result of large blooms of freshwater diatoms

stimulated by the loading of nitrogen and phosphorus in in

land waters (Schelscke & Stoermer 1972; Egge & Aksnes

1992). Hence, by and large, along with increased eutrophi-

cation in coastal waters, N: Si and P: Si ratios have in

creased (Conley et al. 1993; Rahm et al. 1996), thus favour

ing the proliferation of organisms having little or no re

quirement for silicon such as flagellates and cyanobacteria

(Schollhorn & Graneli 1996; Sanden & Hakansson 1996;

Wasmundetal. 1998).

Moreover, decade-long data sets have led to the hypothe

sis for a shift from nitrogen to phosphorus limitation for

large oceanic areas, such as the North Pacific gyre (Karl

1998). In coastal waters, current trends in nutrient loading

are assumed to have skewed historically stable situations to

wards higher N: P ratios, thus pushing some coastal sys

tems to phosphorus limitation (Rabalais et al. 1996; Billen

& Gamier 1997; Hessen et al. 1997). Herbland et al.

(1998), for instance, have reported NO3~:PO43~ values

ranging from 62 to 161 in shelf waters of the Gulf of Biscay

that are influenced by the River Gironde. In these areas,

populations of A. minutum sufficiently concentrated to rep-
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resent a significant fraction of shellfish food could pose a

serious problem.
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